Teaching Learning Based Optimization algorithm for reactive power planning
نویسندگان
چکیده
Reactive power planning is one of the most challenging problem for efficient and source operation of an interconnected power network. It requires effective and optimum co-ordination of all the reactive power sources present in the network. Recently, Teaching Learning Based Optimization (TLBO) algorithm is evolved and finds its application in the field of engineering optimization. In the proposed work TLBO based optimization algorithm is used for reactive power planning and applied in IEEE 30 and IEEE 57 bus system. The results obtained by this method are compared with the results obtained by other optimization techniques like PSO (Particle swarm optimization), Krill heard, HSA (Harmony search algorithm) and BB-BC (Big Bang-Big Crunch). At the end, TLBO appears as the most effective method for reactive power planning among all the methods discussed and can be considered as one of the standard method for reactive power optimization. 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Reducing Losses in a Deregulated Power System with Teaching Learning Based Optimization Algorithm
The robust Newton–Raphson method is suggested to solve the power flow equations. Newton power flow algorithms do not automatically minimize objective function such as real power losses. Hence, this paper presents teaching learning based optimization (TLBO) approach to minimize power lossesby the optimal allocation of reactive power sources considering placement and value in restructured power s...
متن کاملOperation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کاملEconomic Evaluation of Optimal Capacitor Placement in Reconfiguration Distribution System Using Genetic Algorithm
Optimal capacitor placement, considering power system loss reduction, voltage profile improvement, line reactive power decrease and power factor correction, is of particular importance in power system planning and control. The distribution system operator calculates the optimal place, number and capacity of capacitors based on two major purposes: active power loss reduction and return on invest...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملOptimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm
Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...
متن کامل